324 research outputs found

    Analysis of the Brinkman-Forchheimer equations with slip boundary conditions

    Get PDF
    In this work, we study the Brinkman-Forchheimer equations driven under slip boundary conditions of friction type. We prove the existence and uniqueness of weak solutions by means of regularization combined with the Faedo-Galerkin approach. Next we discuss the continuity of the solution with respect to Brinkman's and Forchheimer's coefficients. Finally, we show that the weak solution of the corresponding stationary problem is stable

    The CRF-1 Receptor Antagonist, CP-154,526, Attenuates Stress-Induced Increases in Ethanol Consumption by BALB/cJ Mice

    Get PDF
    Corticotropin-releasing factor (CRF) signaling modulates neurobiological responses to stress and ethanol, and may modulate observed increases in ethanol consumption following exposure to stressful events. The current experiment was conducted to further characterize the role of CRF1 receptor (CRF1R) signaling in stress-induced increases in ethanol consumption in BALB/cJ and C57BL/6N mice

    Blockade of the Corticotropin Releasing Factor Type 1 Receptor Attenuates Elevated Ethanol Drinking Associated With Drinking in the Dark Procedures

    Get PDF
    Drinking in the dark (DID) procedures have recently been developed to induce high levels of ethanol drinking in C57BL/6J mice, which result in blood ethanol concentrations (BECs) reaching levels that have measurable affects on physiology and/or behavior. The present experiments determined whether the increased ethanol drinking caused by DID procedures can be attenuated by pretreatment with CP-154,526; a corticotropin releasing factor type-1 (CRF1) receptor antagonist

    Thermodynamic formalism for contracting Lorenz flows

    Full text link
    We study the expansion properties of the contracting Lorenz flow introduced by Rovella via thermodynamic formalism. Specifically, we prove the existence of an equilibrium state for the natural potential ϕ^t(x,y,z):=tlogJ(x,y,z)cu\hat\phi_t(x,y, z):=-t\log J_{(x, y, z)}^{cu} for the contracting Lorenz flow and for tt in an interval containing [0,1][0,1]. We also analyse the Lyapunov spectrum of the flow in terms of the pressure

    Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells

    Get PDF
    Background: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). Results: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024–2.4 μg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 μg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 μg/mL MWCNT-HT & ND. Conclusions: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations

    Central Neuropeptide Y Modulates Binge-Like Ethanol Drinking in C57BL/6J Mice via Y1 and Y2 Receptors

    Get PDF
    Frequent binge drinking has been linked to heart disease, high blood pressure, type 2 diabetes, and the development of ethanol dependence. Thus, identifying pharmaceutical targets to treat binge drinking is of paramount importance. Here we employed a mouse model of binge-like ethanol drinking to study the role of neuropeptide Y (NPY). To this end, the present set of studies utilized pharmacological manipulation of NPY signaling, immunoreactivity (IR) mapping of NPY and NPY receptors, and electrophysiological recordings from slice preparations of the amygdala. The results indicated that central infusion of NPY, a NPY Y1 receptor (Y1R) agonist, and a Y2R antagonist significantly blunted binge-like ethanol drinking in C57BL/6J mice (that achieved blood ethanol levels >80 mg/dl in control conditions). Binge-like ethanol drinking reduced NPY and Y1R IR in the central nucleus of the amygdala (CeA), and 24 h of ethanol abstinence after a history of binge-like drinking promoted increases of Y1R and Y2R IR. Electrophysiological recordings of slice preparations from the CeA showed that binge-like ethanol drinking augmented the ability of NPY to inhibit GABAergic transmission. Thus, binge-like ethanol drinking in C57BL/6J mice promoted alterations of NPY signaling in the CeA, and administration of exogenous NPY compounds protected against binge-like drinking. The current data suggest that Y1R agonists and Y2R antagonists may be useful for curbing and/or preventing binge drinking, protecting vulnerable individuals from progressing to the point of ethanol dependence

    Impact of mutational profiles on response of primary oestrogen receptor-positive breast cancers to oestrogen deprivation

    Get PDF
    Pre-surgical studies allow study of the relationship between mutations and response of oestrogen receptor-positive (ER+) breast cancer to aromatase inhibitors (AIs) but have been limited to small biopsies. Here in phase I of this study, we perform exome sequencing on baseline, surgical core-cuts and blood from 60 patients (40 AI treated, 20 controls). In poor responders (based on Ki67 change), we find significantly more somatic mutations than good responders. Subclones exclusive to baseline or surgical cores occur in ∼30% of tumours. In phase II, we combine targeted sequencing on another 28 treated patients with phase I. We find six genes frequently mutated: PIK3CA, TP53, CDH1, MLL3, ABCA13 and FLG with 71% concordance between paired cores. TP53 mutations are associated with poor response. We conclude that multiple biopsies are essential for confident mutational profiling of ER+ breast cancer and TP53 mutations are associated with resistance to oestrogen deprivation therapy

    High-Resolution Description of Antibody Heavy-Chain Repertoires in Humans

    Get PDF
    Antibodies' protective, pathological, and therapeutic properties result from their considerable diversity. This diversity is almost limitless in potential, but actual diversity is still poorly understood. Here we use deep sequencing to characterize the diversity of the heavy-chain CDR3 region, the most important contributor to antibody binding specificity, and the constituent V, D, and J segments that comprise it. We find that, during the stepwise D-J and then V-DJ recombination events, the choice of D and J segments exert some bias on each other; however, we find the choice of the V segment is essentially independent of both. V, D, and J segments are utilized with different frequencies, resulting in a highly skewed representation of VDJ combinations in the repertoire. Nevertheless, the pattern of segment usage was almost identical between two different individuals. The pattern of V, D, and J segment usage and recombination was insufficient to explain overlap that was observed between the two individuals' CDR3 repertoires. Finally, we find that while there are a near-infinite number of heavy-chain CDR3s in principle, there are about 3–9 million in the blood of an adult human being
    corecore